
 User Reference Manual, ver. 10.03.15

Sierra

This manual covers the use of Sierra RTK, all functions may not be implemented in the version you chose.

Configuration and some implementation results of the different Sierra, see web page www.agstu.com. The

educational Sierra have not implemented all the functions described in this documentation.

© Copyright by publisher AGSTU AB.

www.agstu.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in

writing from the publisher.

The author and publisher of this manual make no warranty of any kind.

http://www.agstu.com/

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 3

Contents

Introduction 5

About This Manual .. 5
Revision History .. 5
Purpose .. 6
Terms .. 6

Sierra Overview 7

Sierra HW .. 7
HW Scheduler.. 8

Setup and Initiating 10

Sierra Hardware/Software Initiation ... 10
Description... 10
Function declaration ... 10
Argument ... 10
Return codes .. 10

Set and Read Time Base Register ... 10
Description... 10
Function declaration ... 11
Argument ... 11
Return codes .. 11
Example ... 11

Low level API 12

Task Management .. 12
sierra_create_task ... 12
sierra_start_task ... 13
sierra_get_task_info ... 14
sierra_tsw_off .. 15
sierra_tsw_on ... 16
sierra_block_task ... 16
sierra_change_task_prio ... 17
sierra_delete_task ... 17

IRQ Management ... 18
sierra_await_irq ... 19

Time Management ... 19
sierra_period_time_init .. 21
sierra_await_next_period ... 21

Semaphore Management .. 23
sierra_take_sem ... 23
sierra_release_sem ... 24
sierra_read_sem ... 25

Flag Management .. 25
sierra_await_flag .. 27
sierra_set_flag .. 27
sierra_clear_flag ... 28

Sierra information calls .. 29

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 4

Sierra HW Version ... 29
Sierra SW Version ... 30

Logging API 32

Sierra Time Logging Register .. 32
ON/OFF Logging System .. 32
Logging functions .. 32
Sierra Logging Probes .. 33

Extended API 35

Mailbox ... 35
sierra_mbox_get_required_size .. 35
sierra_mbox_init .. 36
sierra_mbox_send .. 36
sierra_mbox_read and sierra_mbox_peak ... 37

Hardware interface 39

Protocol with external start of blocked task (extended Sierra)... 40

Sierra SW File Structure 41

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 5

Introduction

About This Manual
This manual is describing the low-level API service calls direct to the hardware-based Sierra.

The Sierra RTK/RTOS consists of following parts (see next figure):

1. Hardware based Sierra is connected to the data bus, it works as a hardware accelerator for real-time

kernels/operating systems

2. Software_Reference_Manual is a description of the basic RTK device drivers to Sierra HW

Revision History

Date Description

2013-03-18 Updated the documentation

2014-07-18 Updated the documentation

2015-02-03 Added task delete and some text debugging

2016-03-03 Added “task_change_prio” and some text debugging, version 9.2

2016-04-17
v 9.3.1

Change in the scheduler; lowest priority is 0. Same as FreeRTOS
Add Block task of other then the running. Same as FreeRTOS
Update version register

2016-05-01
V 9.4.0

#semaphore is not bounded to #tasks

Sierra Version register updated (see Sierra HW Version)

2017-10-29
V9.4.1

Some updates and optimizations, also a new students Sierra.

2020-04-01 New crypted version of HW Sierra

2022-09-27

V 10.03.15

- Added “sierra_print_versions()”,
- Added prefix sierra_ for functions,

- Updated documentation.
- Add a logging timer, count on the time ticks (32 bits). CPU Time

Logging Register, working with Sierra HW version 9.5.0 and higher.

- Update SW test and add test_000_testing_time_register

- Some errors in test cases fixed
- Logging functions with probes in Sierra
- Extended with Mailbox

Change task test is not working in Sierra_HW version 9.5.0 (bug)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 6

Purpose

The purpose of this Reference Manual is to give programmers the API to Sierra

Real-Time Kernel.

Terms

API Application Programmers Interface, The sum of all function calls available to an

application programmer

Application mode A description of a complete system with scheduler, tasks etc. some RTOS

allows the programmer to specify more than one mode. I.e., an aircraft control

system may have different modes for takeoff, landing, and level flight.

Context switch (task switch) Switch from current running task to another task by saving current task status,

registers etc., and restore status of the task that shall start to run.

Embedded system A computer system that forms a component of a larger system and is expected

to function without human intervention.

Exception Software interrupts.

Interrupt service routine

(ISR)

The routine that is called when an interrupt occurs.

IP Intellectual Property, this is HW/SW components with a specific function.

Real-time system A real-time system is one in which the correctness of the system depends not

only on the logical result of computation, but also on the time at which the

results are generated.

RTOS Real time operating system, an operating system designed to be used in real

time systems.

Task/Thread/Process A task is a sequential programming performing certain functions, a real time

application is usually made up of one or more sets of communicating tasks.

TCB Task control block, a structure containing information about a task, its state,

stack owned resources, the value of the processor registers etc.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 7

Sierra Overview

Ordinary real-time operating systems are implemented in software. The Sierra

are the basic functions implement in hardware, i.e., scheduling, inter process

communication, interrupt management, tick handling, logging, and time

management control into hardware. This makes it possible to take advantage of

hardware characteristics such as parallelism and robustness that consequently

decreases system overhead and decrease response time.

The figure shows Sierra implemented in a computer architecture. The Sierra HW

IP is connected to the CPU bus, driver interface, in software (Sierra API) and an

interrupt connection to the CPU. The task-switch interrupt to the CPU starts pre-

emption of the running task.

Sierra HW

The Sierra HW core is partitioned into modules as shown in the figure.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 8

Tmq = Time Manager

Rmq = Resource Manager

Irq = Interrupt Handler

TDBI = Technology

Dependent Bus Interface

GBI = General Bus Interface

I/O

Irq

Tmq

Rmq
Scheduler GBI

Kernel Accelerator

Sierra

CPU

Bus

T

D

B

I

External

Interrupts
External Start of

blocked tasks

Running

task info

Figure 1. Overview of internal blocks in Sierra HW part

Sierra RTOS is partitioned into these functional units:

Interface

Scheduler

Semaphore and Flag Handler

Time Management Controller

Tick counter for logging

The interface to Sierra is divided into a generic bus interface (GBI) and a

technology dependent bus interface (TDBI). The GBI is bus independent while

the TDBI is glue to the specific bus in the system. This design of the Sierra

makes it very easy to interface it towards different busses.

All communication (service calls) with the Sierra is carried out through registers.

In the internal module interface, the service calls are decoded and routed out the

unit that will carry out the service call. This interface synchronizes external

accesses from the CPU as well as all internal work between modules in the chip.

The Sierra hardware can be configured as following:

• 4-512 tasks

• 4-512 priority levels

• 4 -1024 semaphores

• 4 -1024 flags

• 4 – 512 Timers for delay, periodic tasks

• 2 – infinite interrupts

More about the hardware in the book “Advanced HW/SW Embedded System for

Designer” (Amazon)

HW Scheduler
The Scheduler unit controls all task scheduling in the Sierra. The scheduler can

handle tasks at different priority levels. Tasks can also be created and deleted

dynamically during runtime. When a task is created, it is initialized to a specified

state (blocked or ready).

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 9

A task can exist in five different states; running, ready, blocked, waiting for IRQ

or dormant. The scheduler guarantees that the task with highest priority among

the ready tasks always will run.

The Sierra can support the following task states and transitions:

• Running

• Ready

• Blocked /Waiting

• Wait for interrupt

• Dormant

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 10

Setup and Initiating

Sierra Hardware/Software Initiation

Description
Initiate the TCB in soft/hardware and resets the Sierra hardware. After initiation

the task switch is off.

Function declaration
void sierra_initiation_HW_and_SW(void)

Argument
Nothing

Return codes
N/A

Set and Read Time Base Register

Description
Sets or read the internal clock-tick timebase for the Sierra. This register is used

to set-up the generating of Sierra internal clock tick period for all timing queues

in Sierra.

Time Base Unit

System Frequence Clock

Internal_Time_tick

To Timing queues in

Sierra

Time_base Register

Time tick = Time Base register * 1000/System Frequency Clk

CPU write to register

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 11

 Figure 2. Time Base Unit

Sierra Time Base register value = Time tick * system Frequency/1000

Function declaration
set timebase

read timebase

void sierra_set_timebase (unsigned int

hex)

unsigned int sierra_time_base_reg(void)

Argument
set timebase

read timebase

See Sierra specification for number of bits:/13 bits; hex: range

0-8191, please check the version of hardware. unsigned int

N/A

Return codes
set timebase

read timebase

N/A

unsigned int

Example
void t1(void)

{

 sierra_set_timebase(50); /* Set Sierra internal

 clock-tick to 1ms

 when the HW kernel

 runs at 50 MHz

 system clock*/

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 12

Low level API

Task Management
This section describes the task handling services provided by the scheduler in the

Sierra. The difference between Sierra and other RTOS kernels is that all

scheduling is performed by a hardware piece instead of software. The only

software is the driver that communicates with the hardware kernel. The

following task management functions are implemented in the Sierra hardware

kernel:

Dynamic creation of tasks (sierra_create_task)

Starting of tasks (sierra_block_task)

Yield (sierra_yield_task)

Get task status (sierra_get_task_info)

Task switch off and on (sierra_tsw_on and sierra_tsw_off)

Change task priority

Ready que is organized in two ways (scheduling algorithm):

• Priority driven (lowest priority is 0)

• Same priority is sorted in ID number order, from low to high.

• Preemption

Idle task must be created with task ID 0 and lowest priority (0).

sierra_create_task

Description
Creates a task with a unique task id. The task will be initialized to a state

(blocked or ready) as specified in the argument. It is possible to create new tasks

dynamically during system execution. Idle task must be created and have task ID

0 and lowest priority (0).

Function declaration

void sierra_create_task (int taskID,

 int priority,

 int taskstate,

 void (*taskptr)(void),

 void *stackptr,

 int stacksz);

Argument
task ID Specifies the ID of the task (range depend on the version of Sierra).

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 13

An idle task must be created, and this task shall have task ID 0.

priority Specifies the priority of the task. The range is dependent on the

version), where 0 is the highest-priority level. Highest ID number is

reserved only for the idle task.

taskstate 0 = task is initialized to the blocked state

(BLOCKED_TASK_STATE)

1 = task is initialized to the ready state (READY_TASK_STATE)

taskptr Pointer to code start for the task

stackptr Pointer to task stack

stacksz Size of the stack

Return codes
N/A

Example
#define IDEAL 0

#define READY 1

#define PRIO1 0

#define STACK1_SZ 200

#define T1 1

#define READY 1

#define PRIO1 1

#define STACK1_SZ 200

char stack1[STACK1_SZ];

void t1(void)

{

 task code;

}

void function(void)

{

 sierra_create_task(T1, PRIO1, READY, t1, stack1,

STACK1_SZ);

}

sierra_start_task

Description

Starts a task that is currently placed in blocked state (un-block the task). Starting

a task means that the task is sent into the ready state (see section 2.4., Scheduler)

and does not mean that the task starts to execute immediately. The task will be

moved from blocked state to ready state.

Function declaration
void sierra_start_task (int taskId)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 14

Argument
task ID Specifies the ID of the task (range depend on the version of

 Sierra).

Return codes
N/A

Example
#define T2 2

void t1(void)

{

 sierra_start_task(T2); /* t1 starts T2 */

 while(1)

 {

 /* Insert code*/

 }

}

sierra_get_task_info

Description
Get status information about a specified task.

Function declaration
task_info_t sierra_get_task_info (int taskid)

Argument
task ID Specifies the ID of the task (range depend on the version of

 Sierra)

Return codes

task_info_t state_info (2 bits):

0=Running

1=Blocked

2=Ready

3=Dormant

priority (3 bits, depend on the version of Sierra),

7 is the lowest priority level and 0 is the highest.

Example

task_info_t info;

 printf("Task1\n");

info = task_getinfo(Task1);

printf(" info.state_info = %d\n", info.state_info);

printf(" info.priority = %d\n", info.priority);

Return:

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 15

Task 1

 info.state_info = 2

 info.priority = 1

Special print function (sierra_info.c)
void sierra_task_info(void)

Return:

Idle

 info.state_info = 2

 info.priority = 0

Task 1

 info.state_info = 2

 info.priority = 1

Task 2

 info.state_info = 2

 info.priority = 2

Task 3

 info.state_info = 2

 info.priority = 3

sierra_tsw_off

Description
Disables task-switch interrupts in the system. This is useful when a critical

section is entered. Anyhow, this call should be used with restrictions in a real

time system as it has effects on how/when tasks can start to run. If this call is

used, try to have the task-switch interrupt off as short time as possible.

Function declaration
void sierra_tsw_off (void)

Argument

N/A

Return codes

N/A

Example
void t1(void)

{

 while(1)

 {

 sierra_tsw_off(); /* Entering critical

 section,turn off

 task-switch interrupts */

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 16

sierra_tsw_on

Description
Enables task-switch interrupt.

Function declaration
void sierra_tsw_on(void)

Argument
N/A

Return codes
N/A

Example
void t1(void)

{

 while(1)

 {

 tsw_on(); /* Leaving critical section - Turn on

 task-switch interrupts */

 }

}

sierra_block_task

Description
 Blocks the currently running task. The task will be moved from running state into

 blocked state. It is not allowed to block idle task.

Function declaration
 void sierra_block_task (int taskId)

Argument
task ID Specifies the ID of the task (range depend on the version of

 Sierra).

Return codes
N/A

Example
#define T2 2

void t1(void)

{

 int i=0;

 while(1)

 {

 i++;

 if(i==10) /* Block t2 when I == 10 */

 {

 task_block(T2);i = 0;

 }

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 17

 }

}

sierra_change_task_prio

Description
This call changes a task's priority to a specified priority. It is not allowed to

change idle task priority.

Function declaration
 void sierra_change_task_prio (int taskID,

int priority);

Argument

task ID Specifies the ID of the task (range depend on the version of Sierra).

priority Specifies the priority of the task. The range is dependent on the

version), where 0 is the highest-priority level. Highest ID number is

reserved for the idle task.

Return codes
N/A

Example
#define T2 2

#prio_5 5

void t1(void)

{

 sierra_change_task_prio(T2,prio_5);

/* Task T2 gets priority 5 */

 while(1)

 {

 /* Insert code here */

 }

}

sierra_delete_task

Description
Delete the running task, preformed from current executing tasks code. The task will

be moved from the system and the task ID number will be free for use again. To

restore a deleted task the removed task must be created again. It is not allowed to
perform this call from the idle task.

Function declaration
 void sierra_delete_task(void)

Argument
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 18

Return codes
N/A

Example
void t1(void)

{

 int i=0;

 while(1)

 {

 i++;

 if(i==10)

 {

 task_delete();

 i = 0;

 }

 /* Removed t1 from the system when i==10 */

 }

}

IRQ Management

This section describes the functionality of the Interrupt Manager. The interrupts

are associated with an interrupt task, which is scheduled as an ordinary task in

the system. External interrupt is connected to Sierras external IRQ pins. Each

IRQ input is level sensitivity and active-high.

 The following functions is implemented in hardware:

• Wait for interrupt

If several external interrupts occur simultaneously, the task associated with

highest interrupt pins will be the first one sent to the ready queue.

Figure 3. SW RTK and HW based Sierra solution, two low priority IRQ.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 19

sierra_await_irq

Description
This call used when an interrupt service task is ready to process to wait for an

external interrupt. As a result of this call, the interrupt service task (running task)

will be moved to the ‘Wait for interrupt’ state.

The ID of task that the CPU should context switch too is in the return data.

Function declaration
 void sierra_await_irq(int IRQ_number);

Argument
IRQ number Specifies the interrupt level. The range of the interrupt level

 depends on the version of the Sierra.

Return codes
N/A

Example

Figure 4. Setup example for two external IRQ

void irq_task_code(void)

{

 int i=0;

 printf("IRQ Task starts\n ");

 while(1)

 {

 sierra_await_irq(1); //Wait for external IRQ 1

 printf("IRQ 1 start\n");

 for(i=0; i<500000; i++); //virtual load

 sierra_await_irq(0); //Wait for external IRQ 0

 printf("IRQ 0 start\n");

 for(i=0; i<500000; i++); //virtual load

 }

}

Time Management

This section describes the functionality of the time management controller. The

following functions are implemented:

sierra_delay_task

sierra_period_time_init

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 20

sierra_await_next_period

Description

Blocks the calling task specified number of ticks. The task will be placed in the

blocked state until the timer expires or an undelay call is performed on the task.

When the timer expires, or if the undelay call is performed, the task is placed in

the ready state.

Function declaration
void sierra_delay_task (int delay_time)

Argument
delay_time Specifies the number of ticks to delay the task.

Max value depends on the version of Sierra.

Return codes
N/A

Example
void t1(void)

{

 while(1)

 {

 sierra_delay_task(10); /* t1 is blocked

 for 10 ticks *

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 21

sierra_period_time_init

Description

Initialize the period time for the calling task. This function must be performed

before the use of the function sierra_await_next_period(). See the version of

Sierra for the max value. Possible to use deadline control, to detect starvation.

Function declaration
void sierra_period_time_init (int period_time)

Argument
Period_time Specifies the period time, in number of ticks, for calling task.

Return codes
deadline_control

N/A

Example
void t1(void)

{

 sierra_period_time_init(100); /* Initialize period

 time for t1 to

 100 ticks */

 while(1)

 {

 /* Insert code here */

 }

}

sierra_await_next_period

Description
Suspends a periodic task until the start of next period time. If you miss a periodic

start, Sierra will skip this period, not to disturb the other tasks, the miss to the

periodic task will be reported. The deadline is the same as the period time.

To use deadline control cost no extra execution or response time to manage.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 22

Figure 5. Periodic start with deadline control.

Function declaration
void sierra_await_next_period (void)

task_periodic_start_union sierra_await_next_period

(void)

Argument
deadline_control:

 0: Ok, deadline not missed.

 1: missed at least one deadline.

Return codes
N/A

Example
// Without deadline control

void t1(void)

{

 init_period_time(50);

 while(1)

 {

 sierra_await_next_period();

 }

}

// With deadline control

task_periodic_start_union test;

 while(1)

 {

 test = sierra_await_next_period();

 if (test.periodic_start_integer & 0x1)

 printf("deadline miss, timer task");

 }

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 23

 Semaphore Management
This section describes the functionality of the semaphore management.
The semaphores are used in the system to protect shared resources and for

synchronization of different tasks.

There are 8 binary semaphores available in the Sierra. A semaphore can have a

queue of waiting tasks of the same length as the number of tasks in the system.

This means that a semaphore can be taken by one task and up to 8 other tasks

can be waiting for it. The queue is arranged by task ID numbers. Task with

highest ID number in the queue will run when the semaphore becomes available.

The following semaphore handling functions are supported:

sierra_take_sem

sierra_release_sem

sierra_read_sem

sierra_take_sem

Description
Makes a task pending (waiting) for a semaphore. If the semaphore is free, the

task will continue to execute immediately. If the semaphore is allocated by

another task, the calling task will be suspended and put in a semaphore waiting

queue, until the semaphore becomes free.

Note: The queue is arranged in task ID numbers and task with highest ID

number in the queue will get the semaphore when it becomes available.

Function declaration
void sierra_take_sem (int semID)

Argument
semID Semaphore number (0-15)

Return codes
N/A

Example

#define SEM1 1

void t1(void)

{

 while(1)

 {

 sem_take(SEM1); /* Pend on semaphore 1 */

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 24

sierra_release_sem

Description
Releases a specified semaphore. If there are one or more tasks waiting for the

semaphore, the first task in the semaphore waiting queue will get the semaphore

and will be moved to ready state.

Function declaration
void sierra_release_sem (int semID)

Argument
semID Semaphore number

Return codes
N/A

Example
#define SEM1 1

void t1(void)

{

 while(1)

 {

 sem_release(SEM1); /* Release semaphore 1 */

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 25

sierra_read_sem

Description
Read a task’s semaphore status.

Function declaration
Sem_info_t sierra_read_sem (int taskID)

Argument
taskID Specifies the taskID to read status of.

Return codes
Sem_info_t

status 0 = The task is not waiting for a semaphore (ignore semID)

1 = The task is waiting for a semaphore (Read semID)

semID Semaphore number if specified task is waiting for a

semaphore.

Example
#define SEM3 3

void t1(void)

{

 sem_info_t sem;

 int semID, status;

 while(1)

 {

 sem = sem_read(T2); /* Read semaphore status of

 task T2 */

 /* The different member variables in the

 returned data-structure: */

 status = sem.status;

 semID = sem.semID;

 }

}

Flag Management

The Sierra has support for flags for efficient synchronizing of events. The entire

synchronizing algorithm is handled by the hardware kernel. This makes handling

of flags very efficient since no valuable CPU time is spent on synchronization.

Flags are very efficient in cases where you, for example, have one or several

events handled by some input tasks and there exist an output task triggered by

one or several tasks - see figure 8 below.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 26

Figure 6. Flag example.

The semantics for the figure is; the output task makes a system call where it will

need a combination of flags set to be able to continue to run. If this combination

is not true at the time when the call is performed, the task will be suspended until

the combination becomes true. Task1 runs and sets flag1. At this point the output

task will not be made ready, as it asks for an AND operation between flag1 and

flag2. When task2 has set flag2, the output task will be made ready. The output

task is scheduled and will start to run when it has the highest priority in the ready

queue.

If the Sierra is configured to support 4 flag bits, the flag bits can be used in

24-1 (=15) different combinations.

The following flag handling functions are supported:

sierra_await_flag

sierra_set_flag

sierra_clear_flag

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 27

sierra_await_flag

Description
This call makes a task wait for one or more flags to be set. If the flag(s) are

already set, the task will continue to run, if not it will be suspended until the

combination is set.

Function declaration
void sierra_await_flag (int flag_mask)

Argument
flag_mask The four lowest bits are used, values between 1-

15 are valid. 0 is not a valid flag value.

Return codes
N/A

Example
#define FLAG_MASK 5 /* Flag1 AND Flag3 -> 0101 */

void t1(void)

{

 while(1)

 {

 Sierra_await_flag(FLAG_MASK); /* Wait for Flag1

 and Flag3 to be

 set */

 }

}

sierra_set_flag

Description
This call sets one or more flags. If there are any task(s) waiting for the specific

combination of flags that are set during the call, they will be made ready and

start to run when they have the highest priority in the ready queue.

If a task is waiting for a combination of flags and the call only sets one or few of

the flags, the waiting task will not be activated before all flags are set.

Function declaration
void sierra_set_flag (int flag_mask)

Argument
flag_mask The four lowest bits are used, values between 1-

15 are valid. 0 is not a valid flag value.

Return codes
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 28

Example
#define FLAG_MASK 7 /* Flag1 AND Flag2 AND

 Flag3 -> 0111 */

void t1(void)

{

 while(1)

 {

 sierra_set_flag(FLAG_MASK); /* Set Flag1, Flag2

 and Flag3 */

 }

}

sierra_clear_flag

Description
This call clears one or more flags. When a flag has been set, it needs to be

cleared after a waiting task has taken care of the event that was waiting for the

flag. If there is more than one task using the flag, it is important to know which

one(s) of these tasks that will be permitted to do this call.

Example; there are two tasks waiting for a common flag, but one of the tasks is

also waiting for another flag. When this flag is set, the task that only waits for

this flag is made ready and will start to run when it has the highest priority in the

ready queue. However, if the other task still is waiting for the other flag when

this first task has done its job, this first task should not clear the flag as the other

task still is depending on this flag. In this specific scenario it is the task that is

waiting for both flags that should clear the flag.

Function declaration
void sierra_clear_flag (int flag_mask)

Argument
flag_mask The four lowest bits are used, values between 1-

15 are valid. 0 is not a valid flag value.

Return codes
N/A

Example
#define FLAG_MASK 7 /* Flag1 AND Flag2 AND

 Flag3 -> 0111 */

void t1(void)

{

 while(1)

 {

 sierra_clear_flag(FLAG_MASK); /* Clear Flag1,

 Flag2 and

 Flag3 */

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 29

Sierra information calls

Sierra HW Version

Description
Sierra Version number can be retrieved from Sierra Hardware if you call

sierra_HW_version function.

• MAJOR version when you make incompatible changes,

• MINOR version when you add functionality in a backwards-compatible

manner

• PATCH version when you make backwards-compatible bug fixes

• Number of tasks

Table 1: Sierra version register (binary)

31-28 27-24 23 - 20 19 - 16 15-8 7 – 0

MAJOR_version MINOR_version PATCH_version X Number of semaphores Number of tasks

Function declaration
version_register_union sierra_HW_version(void)

Argument
N/A

Return codes
version_register_union

number_of_tasks (8 bits)

number_of_semaphores (8 bits)

N\A (4 bits)

PATCH_version (4 bits)

MINOR_version (4 bits)

MAJOR_version (4 bits)

Example
#include "altera_avalon_sierra_ker.h"

void sierra_hw_version_print(void)

{

 version_register_union test = sierra_HW_version();

 printf("Sierra HW Major Version = %d\n",

test.version_register.MAJOR_version);

void sierra_hw_versions(void)

}

Return:

Sierra HW Major Version = 9

Example
Void Printf_sierra_HW_version(void)

Return:

Version = 9.5.0

Number of task bits = 3 – 8 tasks

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 30

Number of semaphore’s bits = 3 – 8 semaphores

Sierra SW Version

Description
Sierra Version number from Sierra software can be retrieved if you call

sierra_SW_driver_version() function.

Function declaration
sw_version_union sierra_SW_driver_version(void)

Argument
N/A

Return codes
sw_version _union

PATCH_version (10 bits)

MINOR_version (10 bits)

MAJOR_version (12 bits)

Example
#include "altera_avalon_sierra_ker.h"

void sierra_sw_version_print(void)

{

 sw_version_union info = sierra_SW_driver_version();

 printf(" Sierra SW Major Version = %d\n",

test.version_register.MAJOR_version);

}

Return:

Sierra SW Major Version = 10.03.15

Print Sierra Versions

Description
To print Sierra version numbers for hardware and software you can call

sierra_print_versions() function. The version numbers are divided into three

sections.

• MAJOR version when you make incompatible changes,

• MINOR version when you add functionality in a backwards-compatible

manner

• PATCH version when you make backwards-compatible bug fixes

Function declaration
void sierra_print_versions(void)

Argument
N/A

Return codes
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 31

Example
#include "altera_avalon_sierra_ker.h"

void sierra_versions_print(void)

{

 sierra_print_versions();

}

Return:

Sierra HW version 9.4.2

Sierra SW version 10.3.15

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 32

Logging API

Logging macros for three verbosity level. The levels implemented are SIERRA_LOG_INFO,

SIERRA_LOG_WARN and SIERRA_LOG_ERROR.
The system would save messages from different Sierra functions and then print the results using a
logging subsystem. The info level would log events during normal execution of a program and provide
the user with descriptive data of how the system operated. The warning level would log incidents and
abnormal events prior to execution and during runtime. The error level would address more serious
concerns, for example, if the system encounters a problem from which it cannot recover.

Sierra Time Logging Register
The time register was built as a part of the Sierra hardware, and that count Sierra ticks directly from the
Sierra kernel, without any external interference. The register is defined as a vector (31 DOWNTO 0), and
it counts the internal time ticks (0 - 268 435 454 (dec)). After it has come to the maximum it starts from 0
again.
The function sierra_get_current_time(void) return the value from the time logging register.

Table 2: An overview of the time logging register

Description Utilization

#define M_RD_TIME_LOGGING_REGISTER

IORD_32DIRECT(SIERRA_RTOS_BASE,0x70);
Macro for reading data from
hardware logging register

uint32_t

sierra_get_current_time(void)
Function for returning a value
from the register

ON/OFF Logging System
SIERRA_LOGGING, was created to regulate the system from being on or off. In sierra_logging.h the user
can turn on and off the logging system by updating its defined value:
0 – logging is disabled
1 – logging is enabled
2 – logging is enabled with timestamps

Logging functions
The logging subsystem incorporates four different logging functions, one for each verbosity level and
one for notifying the user about the current status of the logging interface. The functions print the
results (info, warning or error) from Sierra functions using variadic macros.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 33

Table 3: Logging functions from subsystem

Declaration Usage
void

sierra_print_logging_status(void)
Prints current logging status. If the
macro SIERRA_LOGGING is defined
then a message will be printed saying
logging is active. If not defined, then
the message will say the logging
interface is not active.

void sierra_log_info(const char*

szMsg)
The function prints informative
messages and presents data from
Sierra functions during normal
execution of a library. If conditions are
met, the function will also print the
time.

void sierra_log_warn(const char*

szMsg)
The function prints warning messages
and presents metadata from Sierra
functions that encounter abnormal
activity. If conditions are met, the
function will also print the time.

void sierra_log_error(const char*

szMsg)
The function prints error messages and
presents metadata from functions that
have encountered an erroneous event.
If conditions are met, the function will
also print the time.

Sierra Logging Probes
Logging probes were implemented to retrieve data from Sierra functions, and these would be triggered
if certain conditions were met during execution. The probes would have messages written to the logging
macros before being sent to the subsystem. Next figure shows an example of logging data from Sierra.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 34

Figure 7; Example of logging data from Sierra (more information;
https://www.youtube.com/watch?v=zb9rq_glQNI)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 35

Extended API

Mailbox
This section describes the functionality of the Mailbox. The Mailbox is used for sharing data between
tasks/processes in safe manner that won’t cause deadlocks or race conditions.
Mailbox is flexible to fit user needs but there are some limitations, such as 65 536 message per Mailbox
with size limit of 65 536 bytes per message. Following Mailbox is implemented:

• sierra_mbox_get_required_size

• sierra_mbox_init

• sierra_mbox_send

• sierra_mbox_read

• sierra_mbox_peak

sierra_mbox_get_required_size

Description
Calculate size for char array that will be used for Mailbox.

Function declaration
extern uint32_t sierra_mbox_get_required_size(const uint16_t amount_of_messages, const uint16_t

largest_message_data)

Argument
max_messages, Maximum messages.

largest_size, Largest message data.

Returns
uint32_t, that represents required size for mailbox based on inputs.

Notes/Warnings
Nothing.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 36

sierra_mbox_init

Description
Initiates Mailbox to initial state based on passed values.

Function declaration
extern void sierra_mbox_init(sierra_mbox_queue_t* mbox, char* mem_pool, uint16_t max_messages, uint16_t

largest_size)

Argument
mbox Mailbox to initialize.

mem_pool char array that will be used to store header and message/data.

max_messages how many messages can mem_pool hold.

largest_size how large will message/data be.

Returns
Nothing

Notes/Warnings
Make sure that mem_pool (aka char array) will be able to hold all the messages, the example code will show how to

get accurate size for mem_pool.

Example
#include <sierra_extension/sierra_mbox.h>

. . .

// create global Mailbox that is accessible for tasks.

sierra_mbox_queue_t mbox;

. . .

void main()

{

 // calculate total size needed for memory pool

 uint16_t amount_of_message = 3; // amount of message that Mailbox can save.

 uint16_t largest_message_data = 4; // the maximum size of the message can be saved.

 // create memory pool for Mailbox

 char memmory_pool[sierra_mbox_get_required_size(amount_of_message, largest_message_data)];

 sierra_mbox_init(mbox, memmory_pool, amount_of_message, largest_message_data);

}

sierra_mbox_send

Description
Copies header content byte by byte to Mailbox, same with headers data that it is pointing to.

Function declaration
extern sierra_mbox_res_e sierra_mbox_send(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t* header)

Argument
mbox Which Mailbox to send.

header What to save.

Returns
Returns one of the possible responses from sierra_mbox_res_e, if everything went well response will be MBOX_OK

otherwise different response.

Notes/Warnings
Headers data can point to anything, it can point to struct and it will be saved to Mailbox if there is enough space in

Mailbox.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 37

Example
#include <sierra_extension/sierra_mbox.h>

...

// create global Mailbox that is accessible for tasks.

sierra_mbox_queue_t mbox;

...

void task_send()

{

 ...

 sierra_mbox_header_t header;

 header.id = 1;

 ...

 char msg[18] = "My lucky number is";

 int lucky_num = 7;

 ...

 while(1)

 {

 ...

 header.type = MBOX_CHAR_ARR;

 header.size = sizeof(msg);

 sierra_mbox_send(&mbox, &header);

 ...

 header.type = MBOX_INTEGER;

 header.size = sizeof(lucky_num);

 sierra_mbox_send (&mbox, &header);

 }

}

sierra_mbox_read and sierra_mbox_peak

Description
Copies stored header and data that is in Mailbox to users/passed header and headers data.

Read removes the header and headers data after reading, Peak just reads the headers and headers data without

removing from Mailbox.

Function declaration
extern sierra_mbox_res_e sierra_mbox_read(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t* header)

or extern sierra_mbox_res_e sierra_mbox_peak(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t*

header)

Argument
mbox Which Mailbox to read or peak.

header where to save header and headers data.

Returns
Returns one of the possible responses from sierra_mbox_res_e, if everything went well response will be MBOX_OK

otherwise different response.

Notes/Warnings
Headers data needs to point user defined char array with enough space for message/data.

Example
#include <sierra_extension/sierra_mbox.h>

...

// create global Mailbox that is accessible for tasks.

sierra_mbox_queue_t mbox;

...

void task_read()

{

 ...

 sierra_mbox_res_e res;

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 38

 ...

 char buffer[50];

 sierra_mbox_header_t header;

 header.data = buffer;

 ...

 while(1)

 {

 ...

 res = sierra_mbox_read(&mbox, &header);

 if (res != MBOX_OK)

 {

 printf(“something went wrong\n”);

 continue;

 }

 ...

 if (header.type == MBOX_INTEGER)

 printf(“%d\n”, *(int*)header.data);

 if (header.type == MBOX_CHAR_ARR)

 {

 for(int i = 0; I < header.size; i++)

 printf(“%c”, *((char*)header.data + i));

 }

 }

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 39

Hardware interface

Sierra is a component with bus interface, running task ID information, external interrupt and external start of blocked

tasks.

Bus interface (TDBI) can be wrapped to the most busses on the market.

Running task ID info can be used to monitor the running task or logged of another hardware units for different

types of analyses.

External interrupt is direct connected to a task and the task will be scheduled before it can be running on the CPU

External start of blocked task is an advanced function to communicate with hardware units connected to SW tasks.

I/O

Irq

Tmq

Rmq
Scheduler GBI

Kernel Accelerator

Sierra

CPU

Bus

T

D

B

I

External

Interrupts
External Start of

blocked tasks

Running

task info

 Figure 8. Block schematic.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 40

address[7..0]

clk

chipselect_n

read_n

writedata[31..0]

extirq_n[1..0]

reset_n

write_n

external_call_start_blocked_task

external_taskid_start[2..0]

readdata[31..0]

irq

external_runing_taskid_inf o[2..0]

external_ack_start_task

sierra

inst4

 Figure 9: Sierra pin Interfaces

 Table 4 Sierra Pin out

Pin name Direction Description

clk Input, Sys System clock

reset_n Input, Sys HW reset

cs_n Input, Bus Chip select

write_n Input, Bus Read / Write

addr(7:0) Input, Bus Address bus

din(31:0) Input, Bus Data bus in

dout(31:0) Output, Bus Data bus out

irq_n Output, CPU Task switch interrupt

extirq_n(1:0) Input, User External interrupts

External_runing_taskid_info[2..0] Output, User Updating Running task ID

(binary)

external_call_start_blocked_task

(extended Sierra)

Input, User Start of Blocked Tasks, Not

used = ‘0’.

external_ack_start_task

(extended Sierra)

Output, User Start of Blocked Tasks

external_taskid_start[2..0]

(extended Sierra)

Input, User Start of Blocked Tasks

Protocol with external start of blocked task (extended Sierra)

Start of blocked task is done with following protocol:

1) Set “external_taskid_start” that should be started (it have to be in block state, block_task()) and write ‘1’ to

“external_call_start_blocked_task”

2) Wait for “external_ack_task_start” to be ‘1’

3) Write ‘0’ to “external_call_start_blocked_task”

4) Wait for “external_ack_task_start” to be ‘0’

Sierra User Reference Manual, © Copyright by publisher AGSTU AB • 41

Sierra SW File Structure

The Sierra low level API SW consists of the following files:

 Sierra_RTOS (inte uppdaterad)

  HAL

  inc

 altera_avalon_sierra_io.h

 altera_avalon_sierra_ker.h

 altera_avalon_sierra_name.h

 altera_avalon_sierra_regs.h

 altera_avalon_sierra_tcb.h

 altera_avalon_sierra_tcb_offset.h

 sierra_logging.h

  src

 csw.S (context swtich routine)

 sierra.c (basic service calls)

 sierra_sem.c (Semafres and flags service calls)

 sierra_taskc (Task service calls)

 sierra_time.c (Time service calls)

 sierra_info.c (Extra logging/info service calls)

 sierra_logging (logging functions)

alt_exception_enty.S (NiosII exception handling)

alt_exception_trap.S (NiosII trap handling)

 component.mk (makefile)

