Q AGSTU

User Reference Manual, ver. 10.03.15

Sierra

16 tasks SYSTEM
watchdogs
16 semaph.orels/ﬂags Application
delay/periodic start
8 external interrupts
only 2 Kb footprint :&
" sierrasPl
Software
Hardware Sierra P | RTOS
R ghems)) J> 100 % deterministic
CPU /o no scheduling
overhead

This manual covers the use of Sierra RTK, all functions may not be implemented in the version you chose.
Configuration and some implementation results of the different Sierra, see web page www.agstu.com. The
educational Sierra have not implemented all the functions described in this documentation.

© Copyright by publisher AGSTU AB.
www.agstu.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in
writing from the publisher.

The author and publisher of this manual make no warranty of any kind.

http://www.agstu.com/

Contents

Introduction 5
ADOUL THIS IMANUALcci ittt et e e e e e e e e e e e e e e e eeeeeeeaaaas 5
AV ST T I 1) 0] Y/ TR 5
PUIDOSE ... 6
B =] 1T 6

Sierra Overview 7
Y= 0 2= LA 2R 7
[LAV AT 1 1<T0 (U1 L T 8

Setup and Initiating 10
Sierra Hardware/Software INIHATIONeeeiiiiiieeiii e e eiaaees 10

DESCIIPLION. ...ttt bbbt 10
FUNCEION AECIATALION... ...t 10
ATGUMENT. ... 10
RELUIN COUBS ...ttt e e st e e s b b e e e s s sbaa e e e enes 10
Set and Read Time Base REGISIETccviiiiiiieieiiee e 10
D 1Yo] o] o PSSR SR 10
FUNCEION AECIArALION. 11
ATGUMENT. ... 11
RELUIN COUBS ...ttt e e s b b e e e s s sbae e e e saes 11
EXAMPIE e 11

Low level API 12

I QY T Yo T T o USSR 12
e B (=T LT RSO 12
SIEITA_STAIT tASK ..iiivviieiiii e 13
Sierra_get task INFOccoviieiic e 14
SIErra_tSW_OFF L. 15
R =T W o S 16
SIEITA_BIOCK taSKviiiviiiic e 16
sierra_change task _Pri0.......ccoccciiiiiiiie i 17
=T W (=] (] - T S 17

TRQ MaNAGEMENT. ...ttt ettt ettt et e sab e e sbb e e sbeeeanbeeeans 18
=T W VAT UL Ao S 19

TIME MANAGEMENTeiieietie ettt sbe e sae e ebeebe e sbeesree e 19
sierra_period_time_INitccoooveiiiie e 21
Sierra_await_NexXt _Periodcccoueiiiiiieiiiiie s 21

SeMAPhOre MaNAGEMENTiiiie ettt e e sbe et sbeesree e 23
SIEITA_tAKE SEBM ..eiiiiiieii ettt e e nre s 23
SIEMTA_FElEASE SEIM ...iiiiiiiii i 24
=T W Lo L) S 25

Flag Man@gEMENToouiiiii ettt ettt et e e 25
SIEITA_AWAIL_FlAQ ... e v i e 27
SIEITA_SEL FlaQ ... vieiii e s 27
SIEITa_Clear_flag........cooveviiiiii e 28

Sierra informMation CallS............oovuiiiiiiiie e 29

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 3

SHEITA HW VEISION...ceeeeeeee oottt e e e e e e e e et e e e e e e e e e e eeeanes 29

SIEITA SW VEISION ...ttt 30

Logging API 32
Sierra Time Logging REJISIENcovviiiiie et e 32
ON/OFF LOGUING SYSTEIM ...ttt sttt 32
(oo fo gl I 010 Tod £ o] o -SSR 32

Sierra Logging PrODES.......coi i 33
Extended API 35
1|00 SO UOUUTRPPPROPPI 35
sierra_mboX_get reqUIred _SIZE........cccovveveeiiesii e 35

R 1= = W 0] 010)G 1L PR 36
STIEITA_MDOX_SENG ...ttt e e 36
sierra_mbox_read and sierra_mboX_Peak..........cccccvvevieeriieiiieineesinc e 37

Hardware interface 39
Protocol with external start of blocked task (extended Sierra)..........c.cccevvvveviieiiveennnen. 40
Sierra SW File Structure 41

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 4

Introduction

About This Manual

This manual is describing the low-level API service calls direct to the hardware-based Sierra.
The Sierra RTK/RTOS consists of following parts (see next figure):

1. Hardware based Sierra is connected to the data bus, it works as a hardware accelerator for real-time
kernels/operating systems

2. Software_Reference_Manual is a description of the basic RTK device drivers to Sierra HW

Revision History

Date Description

2013-03-18 Updated the documentation

2014-07-18 Updated the documentation

2015-02-03 Added task delete and some text debugging

2016-03-03 Added “task_change prio” and some text debugging, version 9.2
2016-04-17 Change in the scheduler; lowest priority is 0. Same as FreeRTOS
v9.3.1 Add Block task of other then the running. Same as FreeRTOS
Update version register

2016-05-01 #semaphore is not bounded to #tasks

V9.4.0 Sierra Version register updated (see Sierra HW Version)
2017-10-29 Some updates and optimizations, also a new students Sierra.
V9.4.1

2020-04-01 New crypted version of HW Sierra

2022-09-27 - Added “sierra_print_versions()”,

V 10.03.15 - Added prefix sierra_ for functions,

- Updated documentation.
- Add a logging timer, count on the time ticks (32 bits). CPU Time
Logging Register, working with Sierra HW version 9.5.0 and higher.
- Update SW test and add test_000_testing_time_register
- Some errors in test cases fixed
- Logging functions with probes in Sierra
- Extended with Mailbox
Change task test is not working in Sierra HW version 9.5.0 (bug)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

Purpose

The purpose of this Reference Manual is to give programmers the API to Sierra
Real-Time Kernel.

Terms
API

Application mode

Context switch (task switch)
Embedded system
Exception

Interrupt service routine
(ISR)

1P

Real-time system

RTOS

Task/Thread/Process

TCB

Application Programmers Interface, The sum of all function calls available to an
application programmer

A description of a complete system with scheduler, tasks etc. some RTOS
allows the programmer to specify more than one mode. I.e., an aircraft control
system may have different modes for takeoff, landing, and level flight.

Switch from current running task to another task by saving current task status,
registers etc., and restore status of the task that shall start to run.

A computer system that forms a component of a larger system and is expected
to function without human intervention.

Software interrupts.

The routine that is called when an interrupt occurs.

Intellectual Property, this is HW/SW components with a specific function.

A real-time system is one in which the correctness of the system depends not
only on the logical result of computation, but also on the time at which the
results are generated.

Real time operating system, an operating system designed to be used in real
time systems.

A task is a sequential programming performing certain functions, a real time
application is usually made up of one or more sets of communicating tasks.

Task control block, a structure containing information about a task, its state,
stack owned resources, the value of the processor registers etc.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

Sierra Overview

Ordinary real-time operating systems are implemented in software. The Sierra
are the basic functions implement in hardware, i.e., scheduling, inter process
communication, interrupt management, tick handling, logging, and time
management control into hardware. This makes it possible to take advantage of
hardware characteristics such as parallelism and robustness that consequently
decreases system overhead and decrease response time.

task-switch

Users tasks

D-t"

interrupt nterrupts
CPU Sierra HW
1P

r 3
+ CPU Bus

F 3

v

10 HW IP RAM SW driver for Sierra
Component (Sierra API)

The figure shows Sierra implemented in a computer architecture. The Sierra HW
IP is connected to the CPU bus, driver interface, in software (Sierra API) and an
interrupt connection to the CPU. The task-switch interrupt to the CPU starts pre-

emption of the running task.

Sierra HW

The Sierra HW core is partitioned into modules as shown in the figure.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

Kernel Accelerator

Sierra
Running
Tmg = Time Manager > Tm > task info
Rmg = Resource Manager 9
Irg = Interrupt Handler T
TDBI = Technology CPU D ﬂ—[\ » Rmq P
Dependent Bus Interface Bus B | GBI 110 Scheduled
GBI = General Bus Interface | > r >
_‘ q
External External Start of
Interrupts blocked tasks

Figure 1. Overview of internal blocks in Sierra HW part

Sierra RTOS is partitioned into these functional units:

Interface

Scheduler

Semaphore and Flag Handler
Time Management Controller
Tick counter for logging

The interface to Sierra is divided into a generic bus interface (GBI) and a
technology dependent bus interface (TDBI). The GBI is bus independent while
the TDBI is glue to the specific bus in the system. This design of the Sierra
makes it very easy to interface it towards different busses.

All communication (service calls) with the Sierra is carried out through registers.
In the internal module interface, the service calls are decoded and routed out the
unit that will carry out the service call. This interface synchronizes external

accesses from the CPU as well as all internal work between modules in the chip.

The Sierra hardware can be configured as following:

4-512 tasks

4-512 priority levels

4 -1024 semaphores

4 -1024 flags

4 — 512 Timers for delay, periodic tasks
2 — infinite interrupts

More about the hardware in the book “Advanced HW/SW Embedded System for
Designer” (Amazon)

HW Scheduler

The Scheduler unit controls all task scheduling in the Sierra. The scheduler can
handle tasks at different priority levels. Tasks can also be created and deleted
dynamically during runtime. When a task is created, it is initialized to a specified
state (blocked or ready).

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o8

A task can exist in five different states; running, ready, blocked, waiting for IRQ
or dormant. The scheduler guarantees that the task with highest priority among
the ready tasks always will run.

The Sierra can support the following task states and transitions:

Running

Ready

Blocked /Wiaiting
Wait for interrupt
Dormant

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 9

Setup and Initiating

Sierra Hardware/Software Initiation

Description

Initiate the TCB in soft/hardware and resets the Sierra hardware. After initiation
the task switch is off.

Function declaration

void sierra initiation HW and SW(void)

Argument
Nothing

Return codes
N/A

Set and Read Time Base Register

Description

Sets or read the internal clock-tick timebase for the Sierra. This register is used
to set-up the generating of Sierra internal clock tick period for all timing queues
in Sierra.

Time Base Unit

System Frequence M—ﬂ Time tick = Time Base register * 1000/System Frequency Clk ‘ E—
A Internal_Time_tick
To Timing queues in
Sierra

’ Time_base Register ‘

A

CPU write to register

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 10

Figure 2. Time Base Unit

Sierra Time Base register value = Time tick * system Frequency/1000

Function declaration

set timebase void sierra set timebase (unsigned int
hex)
read timebase unsigned int sierra time base reg(void)
Argument
set timebase See Sierra specification for number of bits:/13 bits; hex: range

0-8191, please check the version of hardware. unsigned int
read timebase N/A

Return codes
set timebase N/A

read timebase unsigned int

Example
void tl(void)
{
sierra set timebase(50); /* Set Sierra internal

clock-tick to 1lms
when the HW kernel
runs at 50 MHz
system clock*/

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 11

Low level API

Task Management

sierra_create_task

This section describes the task handling services provided by the scheduler in the
Sierra. The difference between Sierra and other RTOS kernels is that all
scheduling is performed by a hardware piece instead of software. The only
software is the driver that communicates with the hardware kernel. The
following task management functions are implemented in the Sierra hardware
kernel:

Dynamic creation of tasks (sierra_create_task)

Starting of tasks (sierra_block_task)

Yield (sierra_yield_task)

Get task status (sierra_get_task_info)

Task switch off and on (sierra_tsw_on and sierra_tsw_off)
Change task priority

Ready que is organized in two ways (scheduling algorithm):

e Priority driven (lowest priority is 0)

e Same priority is sorted in ID number order, from low to high.
e Preemption

Idle task must be created with task ID 0 and lowest priority (0).

Description

Creates a task with a unique task id. The task will be initialized to a state
(blocked or ready) as specified in the argument. It is possible to create new tasks
dynamically during system execution. Idle task must be created and have task ID
0 and lowest priority (0).

Function declaration

void sierra create task (int taskID,
int priority,
int taskstate,
void (*taskptr) (void),
void *stackptr,
int stacksz);

Argument
task ID Specifies the ID of the task (range depend on the version of Sierra).

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 12

An idle task must be created, and this task shall have task ID O.

priority Specifies the priority of the task. The range is dependent on the
version), where 0 is the highest-priority level. Highest ID number is
reserved only for the idle task.

taskstate 0 = task is initialized to the blocked state
(BLOCKED_TASK_STATE)

1 = task is initialized to the ready state (READY_TASK_STATE)

taskptr Pointer to code start for the task
stackptr Pointer to task stack

stacksz Size of the stack

Return codes
N/A

Example
#define IDEAL 0
#define READY 1
#define PRIO1 0
#define STACK1l SZ 200
#define T1 1
#define READY 1
#define PRIOL 1
#define STACK1 SZ 200

char stackl [STACK1l SZ];

void tl(void)
{

task code;

}

void function (void)
{
sierra create task(Tl, PRIOl, READY, tl, stackl,
STACK1 SZ);
}

sierra_start_task

Description

Starts a task that is currently placed in blocked state (un-block the task). Starting
a task means that the task is sent into the ready state (see section 2.4., Scheduler)
and does not mean that the task starts to execute immediately. The task will be
moved from blocked state to ready state.

Function declaration
void sierra start task (int taskId)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 13

Argument

task ID Specifies the ID of the task (range depend on the version of

Sierra).

Return codes
N/A

Example
#define T2 2

void tl(void)
{

sierra start task(T2); /* tl starts T2 */

while (1)
{
/* Insert code*/

}

sierra_get_task_info

Description
Get status information about a specified

Function declaration

task.

task info t sierra get task info (int taskid)

Argument

task ID Specifies the 1D of the task (range depend on the version of

Sierra)

Return codes

task_info_t state_info (2 bits):
0=Running
1=Blocked
2=Ready
3=Dormant

priority (3 bits, depend on the version of Sierra),
7 is the lowest priority level and 0 is the highest.

Example

task info t info;

printf ("Taskl\n");
info = task getinfo(Taskl)

printf (" info.state info =
printf (" info.priority = %
Return:

%d\n", info.state info);
d\n", info.priority);

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 14

Task 1
info.state info = 2
info.priority =1
Special print function (sierra_info.c)
void sierra task info(void)

Return:
Idle
info.state info = 2
info.priority = 0
Task 1
info.state info = 2
info.priority =1
Task 2
info.state info = 2
info.priority = 2
Task 3
info.state info = 2
info.priority =

w

sierra_tsw_off

Description

Disables task-switch interrupts in the system. This is useful when a critical
section is entered. Anyhow, this call should be used with restrictions in a real
time system as it has effects on how/when tasks can start to run. If this call is
used, try to have the task-switch interrupt off as short time as possible.

Function declaration
void sierra tsw off (void)

Argument
N/A

Return codes
N/A

Example
void tl(void)
{

while (1)
{
sierra tsw off(); /* Entering critical
section, turn off
task-switch interrupts */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 15

sierra_tsw_on

sierra_block_task

Description
Enables task-switch interrupt.

Function declaration
void sierra tsw_on(void)

Argument
N/A

Return codes
N/A

Example
void tl(void)
{

while (1)
{
tsw on(); /* Leaving critical section - Turn on
task-switch interrupts */
}
}
Description

Blocks the currently running task. The task will be moved from running state into
blocked state. It is not allowed to block idle task.

Function declaration
void sierra block task (int taskId)

Argument
task ID Specifies the 1D of the task (range depend on the version of
Sierra).

Return codes
N/A

Example
#define T2 2

void tl (void)
{
int i=0;
while (1)
{
i++;
if (i==10) /* Block t2 when I == 10 */
{
task block(T2);i = 0;
}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 16

sierra_change_task_prio

sierra_delete_task

Description

This call changes a task's priority to a specified priority. It is not allowed to
change idle task priority.

Function declaration
void sierra change task prio (int taskID,
int priority);

Argument

task ID Specifies the ID of the task (range depend on the version of Sierra).

priority Specifies the priority of the task. The range is dependent on the
version), where 0 is the highest-priority level. Highest ID number is
reserved for the idle task.

Return codes
N/A

Example
#define T2 2
#prio 5 5

void tl(void)
{

sierra change task prio(T2,prio 5);
/* Task T2 gets priority 5 */

while (1)
{

/* Insert code here */

}

Description

Delete the running task, preformed from current executing tasks code. The task will
be moved from the system and the task ID number will be free for use again. To
restore a deleted task the removed task must be created again. It is not allowed to
perform this call from the idle task.

Function declaration
void sierra delete task(void)

Argument
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 17

Return codes
N/A

Example
void tl(void)
{
int i=0;
while (1)
{
i++;
if (i==10)
{
task delete();
i = 0;
}
/* Removed tl from the system when i==10 */
}

IRQ Management

This section describes the functionality of the Interrupt Manager. The interrupts
are associated with an interrupt task, which is scheduled as an ordinary task in
the system. External interrupt is connected to Sierras external IRQ pins. Each
IRQ input is level sensitivity and active-high.

The following functions is implemented in hardware:
e Wait for interrupt

If several external interrupts occur simultaneously, the task associated with
highest interrupt pins will be the first one sent to the ready queue.

Task i .
a executing L' Task sx acuting
]
5
>
4 1 Execute ISR code
3
—/
2
]
1 e ———— > 1 i) e ——
Time Irgl Irgq2
SW solution, Externalinterrupt Sierra solution: Schedule external interrupts based at the priority

Figure 3. SW RTK and HW based Sierra solution, two low priority IRQ.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 18

sierra_await_irq

Description

This call used when an interrupt service task is ready to process to wait for an
external interrupt. As a result of this call, the interrupt service task (running task)
will be moved to the “Wait for interrupt’ state.

The ID of task that the CPU should context switch too is in the return data.

Function declaration
void sierra await irg(int IRQ number);

Argument
IRQ number Specifies the interrupt level. The range of the interrupt level
depends on the version of the Sierra.

Return codes
N/A

Example

niosl|

Figure 4. Setup example for two external IRQ

void irg_task code (void)
{
int 1=0;
printf ("IRQ Task starts\n ");

while (1)

{
sierra await irq(l); //Wait for external IRQ 1
printf ("IRQ 1 start\n");
for (1=0; 1<500000; i++); //virtual load
sierra await irq(0); //Wait for external IRQ O
printf ("IRQ 0 start\n");
for (i=0; i<500000; i++); //virtual load

Time Management

This section describes the functionality of the time management controller. The
following functions are implemented:

sierra_delay_task
sierra_period_time_init

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 19

sierra_await_next_period

Description

Blocks the calling task specified number of ticks. The task will be placed in the
blocked state until the timer expires or an undelay call is performed on the task.

When the timer expires, or if the undelay call is performed, the task is placed in

the ready state.

Function declaration
void sierra delay task (int delay time)

Argument
delay_time Specifies the number of ticks to delay the task.
Max value depends on the version of Sierra.

Return codes
N/A

Example
void tl(void)
{
while (1)
{
sierra delay task(10); /* tl is blocked
B B for 10 ticks *

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 20

sierra_period_time_init

Description

Initialize the period time for the calling task. This function must be performed
before the use of the function sierra_await_next_period(). See the version of
Sierra for the max value. Possible to use deadline control, to detect starvation.

Function declaration

void sierra period time init (int period time)

Argument
Period_time Specifies the period time, in number of ticks, for calling task.

Return codes
deadline_control

N/A

Example
void tl(void)
{

sierra period time init (100); /* Initialize period
time for tl to
100 ticks */

while (1)

{

/* Insert code here */

}

sierra_await_next_period

Description

Suspends a periodic task until the start of next period time. If you miss a periodic
start, Sierra will skip this period, not to disturb the other tasks, the miss to the
periodic task will be reported. The deadline is the same as the period time.

To use deadline control cost no extra execution or response time to manage.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 21

Period Missed
Task A start deadline
A
Waiting = — —
Ready Queve o = e =
Rmmin_g = Time
(executing) . . . >

Deadline Control

Figure 5. Periodic start with deadline control.

Function declaration

void sierra await next period (void)

task periodic start union sierra await next period

(void)

Argument
deadline_control:

0: Ok, deadline not missed.

1: missed at least one deadline.

Return codes
N/A

Example

// Without deadline control

void tl(void)
{

init period time (50);

while (1)
{

sierra await next period();

}
}

// With deadline control
task periodic_start union test;

while (1)
{

test = sierra await next period();

if (test.periodic_start integer & 0x1)
printf ("deadline miss, timer task");

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 22

Semaphore Management

sierra_take_sem

This section describes the functionality of the semaphore management.
The semaphores are used in the system to protect shared resources and for
synchronization of different tasks.

There are 8 binary semaphores available in the Sierra. A semaphore can have a
queue of waiting tasks of the same length as the number of tasks in the system.
This means that a semaphore can be taken by one task and up to 8 other tasks
can be waiting for it. The queue is arranged by task ID numbers. Task with
highest ID number in the queue will run when the semaphore becomes available.

The following semaphore handling functions are supported:

sierra_take_sem
sierra_release_sem
sierra_read_sem

Description

Makes a task pending (waiting) for a semaphore. If the semaphore is free, the
task will continue to execute immediately. If the semaphore is allocated by
another task, the calling task will be suspended and put in a semaphore waiting
queue, until the semaphore becomes free.

Note: The queue is arranged in task ID numbers and task with highest 1D
number in the queue will get the semaphore when it becomes available.

Function declaration
void sierra take sem (int semlID)

Argument
semiD Semaphore number (0-15)

Return codes
N/A

Example

#define SEM1 1

void tl(void)
{

while (1)
{

sem_ take (SEM1); /* Pend on semaphore 1 */
}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 23

sierra_release_sem

Description

Releases a specified semaphore. If there are one or more tasks waiting for the
semaphore, the first task in the semaphore waiting queue will get the semaphore
and will be moved to ready state.

Function declaration
void sierra release sem (int semID)

Argument
semID Semaphore number

Return codes
N/A

Example
#define SEM1 1

void tl(void)
{

while (1)
{

sem release (SEMI1) ; /* Release semaphore 1 */

}

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 24

sierra_read_sem

Description
Read a task’s semaphore status.

Function declaration
Sem info t sierra read sem (int taskID)

Argument
tasklD Specifies the tasklD to read status of.

Return codes

Sem_info_t

status 0 = The task is not waiting for a semaphore (ignore semID)
1 = The task is waiting for a semaphore (Read semID)

semID Semaphore number if specified task is waiting for a
semaphore.

Example

#define SEM3 3

void tl(void)

{
sem _info t sem;
int semID, status;

while (1)
{
sem = sem read(T2); /* Read semaphore status of
task T2 */

/* The different member variables in the
returned data-structure: */

status = sem.status;

semID = sem.semlD;

Flag Management

The Sierra has support for flags for efficient synchronizing of events. The entire
synchronizing algorithm is handled by the hardware kernel. This makes handling
of flags very efficient since no valuable CPU time is spent on synchronization.

Flags are very efficient in cases where you, for example, have one or several
events handled by some input tasks and there exist an output task triggered by
one or several tasks - see figure 8 below.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 25

Eventl Input flagl is set

task1 >
wait for flagl
& flag2 output task is put in

Output ready queue
—_— task >
Input -
Event2 taskd flag? is set
_ >

Figure 6. Flag example.

The semantics for the figure is; the output task makes a system call where it will
need a combination of flags set to be able to continue to run. If this combination
is not true at the time when the call is performed, the task will be suspended until
the combination becomes true. Taskl runs and sets flagl. At this point the output
task will not be made ready, as it asks for an AND operation between flagl and
flag2. When task2 has set flag2, the output task will be made ready. The output
task is scheduled and will start to run when it has the highest priority in the ready
queue.

If the Sierra is configured to support 4 flag bits, the flag bits can be used in
24-1 (=15) different combinations.

The following flag handling functions are supported:

sierra_await_flag
sierra_set flag
sierra_clear_flag

Sierra User Reference Manual, © Copyright by publisher AGSTU AB * 26

sierra_await_flag

sierra_set_flag

Description

This call makes a task wait for one or more flags to be set. If the flag(s) are
already set, the task will continue to run, if not it will be suspended until the
combination is set.

Function declaration
void sierra await flag (int flag mask)

Argument
flag_mask The four lowest bits are used, values between 1-
15 are valid. 0 is not a valid flag value.

Return codes
N/A

Example
#define FLAG MASK 5 /* Flagl AND Flag3 -> 0101 */

void tl(void)
{

while (1)
{
Sierra await flag(FLAG MASK); /* Wait for Flagl
and Flag3 to be
set */

Description

This call sets one or more flags. If there are any task(s) waiting for the specific
combination of flags that are set during the call, they will be made ready and
start to run when they have the highest priority in the ready queue.

If a task is waiting for a combination of flags and the call only sets one or few of
the flags, the waiting task will not be activated before all flags are set.

Function declaration
void sierra set flag (int flag mask)

Argument
flag_mask The four lowest bits are used, values between 1-
15 are valid. 0 is not a valid flag value.

Return codes
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 27

sierra_clear_flag

Example
#define FLAG MASK 7 /* Flagl AND Flag2 AND
Flag3 -> 0111 */
void tl(void)
{

while (1)
{
sierra set flag(FLAG MASK); /* Set Flagl, Flag2
and Flag3 */

Description

This call clears one or more flags. When a flag has been set, it needs to be
cleared after a waiting task has taken care of the event that was waiting for the
flag. If there is more than one task using the flag, it is important to know which
one(s) of these tasks that will be permitted to do this call.

Example; there are two tasks waiting for a common flag, but one of the tasks is
also waiting for another flag. When this flag is set, the task that only waits for
this flag is made ready and will start to run when it has the highest priority in the
ready queue. However, if the other task still is waiting for the other flag when
this first task has done its job, this first task should not clear the flag as the other
task still is depending on this flag. In this specific scenario it is the task that is
waiting for both flags that should clear the flag.

Function declaration
void sierra clear flag (int flag mask)

Argument
flag_mask The four lowest bits are used, values between 1-
15 are valid. 0 is not a valid flag value.

Return codes
N/A

Example
#define FLAG MASK 7 /* Flagl AND Flag2 AND
Flag3 -> 0111 */
void tl(void)
{

while (1)
{
sierra clear flag(FLAG MASK); /* Clear Flagl,
Flag2 and
Flag3 */

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 28

Sierra information calls

Sierra HW Version

Description
Sierra Version number can be retrieved from Sierra Hardware if you call
sierra_HW _version function.

e MAJOR version when you make incompatible changes,

e MINOR version when you add functionality in a backwards-compatible

manner
e PATCH version when you make backwards-compatible bug fixes
e Number of tasks

Table 1: Sierra version register (binary)

31-28

27-24

23-20 19-16 15-8 7-0

MAJOR _version

MINOR version | PATCH version X Number of semaphores Number of tasks

Function declaration
version register union sierra HW version(void)

Argument
N/A

Return codes

version_register_union number_of_tasks (8 bits)
number_of semaphores (8 bits)
N\A (4 bits)
PATCH_version (4 bits)
MINOR_version (4 bits)
MAJOR _version (4 bits)

Example
#include "altera avalon sierra ker.h"

void sierra hw version print (void)

{
version register union test = sierra HW version();

printf ("Sierra HW Major Version = %d\n",
test.version register.MAJOR version);
void sierra hw versions (void)

}

Return:

Sierra HW Major Version = 9
Example

Void Printf sierra HW version (void)
Return:

Version = 9.5.0

Number of task bits = 3 - 8 tasks

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 29

Number of semaphore’s bits = 3 - 8 semaphores

Sierra SW Version

Description
Sierra Version number from Sierra software can be retrieved if you call
sierra_SW_driver_version() function.

Function declaration
sw_version union sierra SW driver version(void)

Argument
N/A

Return codes

SW_version _union PATCH_version (10 bits)
MINOR_version (10 bits)
MAJOR_version (12 bits)

Example
#include "altera avalon sierra ker.h"

void sierra sw_version print (void)
{

sw_version union info = sierra SW driver version();

printf (" Sierra SW Major Version = %d\n",
test.version register.MAJOR version);

}

Return:
Sierra SW Major Version = 10.03.15

Print Sierra Versions

Description
To print Sierra version numbers for hardware and software you can call
sierra_print_versions() function. The version numbers are divided into three
sections.

* MAJOR version when you make incompatible changes,

* MINOR version when you add functionality in a backwards-compatible

manner
» PATCH version when you make backwards-compatible bug fixes

Function declaration

void sierra print versions (void)

Argument
N/A

Return codes
N/A

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 30

Example

#include "altera avalon sierra ker.h"

void sierra versions print (void)
{

sierra print versions();

Return:
Sierra HW version 9.4.2
Sierra SW version 10.3.15

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 31

Logging API

Logging macros for three verbosity level. The levels implemented are SIERRA LOG INFO,
SIERRA LOG WARN and SIERRA LOG ERROR.

The system would save messages from different Sierra functions and then print the results using a
logging subsystem. The info level would log events during normal execution of a program and provide
the user with descriptive data of how the system operated. The warning level would log incidents and
abnormal events prior to execution and during runtime. The error level would address more serious
concerns, for example, if the system encounters a problem from which it cannot recover.

Sierra Time Logging Register

The time register was built as a part of the Sierra hardware, and that count Sierra ticks directly from the
Sierra kernel, without any external interference. The register is defined as a vector (31 DOWNTO 0), and
it counts the internal time ticks (0 - 268 435 454 (dec)). After it has come to the maximum it starts from O
again.

The function sierra get current time () return the value from the time logging register.

Table 2: An overview of the time logging register

Description Utilization

#define M_RD_TIME_LOGGING_REGISTER Macro for reading data from

IORD 32DIRECT (SIERRA RTOS BASE, 0x70) ; hardware logging register

uint32 t Function for returning a value
sierra_get current_ time (void) from the register

ON/OFF Logging System

SIERRA LOGGING, was created to regulate the system from being on or off. In sierra_logging.h the user
can turn on and off the logging system by updating its defined value:

0 - logging is disabled

1 —logging is enabled

2 —logging is enabled with timestamps

Logging functions

The logging subsystem incorporates four different logging functions, one for each verbosity level and
one for notifying the user about the current status of the logging interface. The functions print the
results (info, warning or error) from Sierra functions using variadic macros.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB ° 32

Table 3: Logging functions from subsystem

Declaration

Usage

void
sierra print logging_status (void)

Prints current logging status. If the
macro SIERRA LOGGING is defined
then a message will be printed saying
logging is active. If not defined, then
the message will say the logging
interface is not active.

void sierra_log_info (const char*
szMsq)

The function prints informative
messages and presents data from
Sierra functions during normal
execution of a library. If conditions are
met, the function will also print the
time.

void sierra_ log warn (const char*
szMsq)

The function prints warning messages
and presents metadata from Sierra
functions that encounter abnormal
activity. If conditions are met, the
function will also print the time.

void sierra_ log error (const char*
szMsqg)

The function prints error messages and
presents metadata from functions that
have encountered an erroneous event.
If conditions are met, the function will
also print the time.

Sierra Logging Probes

Logging probes were implemented to retrieve data from Sierra functions, and these would be triggered
if certain conditions were met during execution. The probes would have messages written to the logging
macros before being sent to the subsystem. Next figure shows an example of logging data from Sierra.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 33

£0G_INFO: STERRA_TASK, Next task requested, cask 0 moves
.LOG_INFO: SIERRA_TASK, task 0 replaced task 2 TIME: 152
LOG_INFO: SIERRA TASK, task 0 replaced task 4 TIME: 152
LOG_INFO: SIERRA TIME, Task 2 is suspended until next time period TIM
LOG_INFO: SIERRA TASK, Next task requested, task 2 moved to Running s
LOG_INFO: SIERRA SVC, sem take 1 TIME: 156
: SIERRA_SVC, sem release 1 TIME: 157)
LOG INFO: SIERRA_TIME, Task 0 is suspended until next time period TIME: 15
: SIERRAR_TASK, Next task requested, task 0 moved to Running st
LBG INFO: SIERRA TASK, task 0 replaced task 4 TIME: 177
LOG IEFO: SIERRA_TIME, Task 0 is suspended until next time period
DOG—INFO: SIERRA_TASK, Next task requested, task 0 moved to Running
. IBG INFO: SIERRA_TASK, task 0 replaced task 2 TIME: 202
N SIERRA TASK, task 0 replaced task 4 TIME: 202
% SIERRA_'IIHE, Task 2 is suspended until next time period
SIERRA_IASK, Next task requested, task 2 moved to Runn
SIERRA SVC, sem take 1 TIME: 204
s;mj\:svc, sem_release 1 TIME: 204
, Task 0 i

:
:

Figure 7; Example of logging data from Sierra (more information;
https://www.youtube.com/watch?v=zb9rq_gIQNI)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 34

Extended API

Mailbox

This section describes the functionality of the Mailbox. The Mailbox is used for sharing data between
tasks/processes in safe manner that won’t cause deadlocks or race conditions.

Mailbox is flexible to fit user needs but there are some limitations, such as 65 536 message per Mailbox

with size limit of 65 536 bytes per message. Following Mailbox is implemented:
e sierra_mbox_get required_size
e sierra_mbox_init
e sierra_mbox_send
e sierra_mbox_read
e sierra_mbox_peak

sierra_mbox_get required_size

Description
Calculate size for char array that will be used for Mailbox.

Function declaration
extern uint32_t sierra_mbox_get_required_size(const uintl6_t amount_of messages, const uint16 t
largest_message data)

Argument
max_messages, Maximum messages.
largest_size, Largest message data.

Returns
uint32_t, that represents required size for mailbox based on inputs.

Notes/Warnings
Nothing.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 35

sierra_mbox_init

Description
Initiates Mailbox to initial state based on passed values.

Function declaration

extern void sierra_mbox_init(sierra_mbox_queue_t* mbox, char* mem_pool, uintl6_t max_messages, uintl6 t
largest_size)

Argument
mbox Mailbox to initialize.
mem_pool char array that will be used to store header and message/data.
max_messages how many messages can mem_pool hold.
largest_size how large will message/data be.

Returns
Nothing

Notes/Warnings
Make sure that mem_pool (aka char array) will be able to hold all the messages, the example code will show how to
get accurate size for mem_pool.

Example

#include <sierra extension/sierra mbox.h>

// create global Mailbox that is accessible for tasks.
sierra mbox queue t mbox;

void main ()
{
// calculate total size needed for memory pool
uintl6é t amount of message = 3; // amount of message that Mailbox can save.
uintlé t largest message data = 4; // the maximum size of the message can be saved.

// create memory pool for Mailbox
char memmory pool[sierra mbox get required size (amount of message, largest message data)];
sierra mbox init (mbox, memmory pool, amount of message, largest message data);

sierra_mbox_send

Description
Copies header content byte by byte to Mailbox, same with headers data that it is pointing to.

Function declaration
extern sierra_mbox_res_e sierra_mbox_send(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t* header)

Argument
mbox Which Mailbox to send.
header What to save.

Returns
Returns one of the possible responses from sierra_mbox_res_e, if everything went well response will be MBOX_OK
otherwise different response.

Notes/Warnings
Headers data can point to anything, it can point to struct and it will be saved to Mailbox if there is enough space in
Mailbox.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 36

Example

#include <sierra_extension/sierra mbox.h>

// create global Mailbox that is accessible for tasks.
sierra mbox queue t mbox;

void task send()

{

sierra mbox header t header;
header.id = 1;

char msg[18] = "My lucky number is";
int lucky num = 7;
while (1)
{
header.type = MBOX CHAR_ARR;

header.size = sizeof (msqg);
sierra mbox send(&mbox, &header);

header.type = MBOX INTEGER;
header.size = sizeof (lucky num);
sierra mbox send (&mbox, &header);

sierra_mbox_read and sierra_mbox_peak

Description
Copies stored header and data that is in Mailbox to users/passed header and headers data.
Read removes the header and headers data after reading, Peak just reads the headers and headers data without
removing from Mailbox.

Function declaration
extern sierra_mbox_res_e sierra_mbox_read(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t* header)

or extern sierra_mbox_res_e sierra_mbox_peak(sierra_mbox_queue_t* mbox, const sierra_mbox_header_t*
header)

Argument
mbox Which Mailbox to read or peak.
header where to save header and headers data.

Returns

Returns one of the possible responses from sierra_mbox_res_e, if everything went well response will be MBOX_OK
otherwise different response.

Notes/Warnings
Headers data needs to point user defined char array with enough space for message/data.

Example

#include <sierra extension/sierra mbox.h>

// create global Mailbox that is accessible for tasks.
sierra mbox queue t mbox;

void task read()

{

sierra mbox res e res;

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 37

char buffer[50];
sierra mbox header t header;
header.data = buffer;

while (1)

{
res = sierra mbox read(&mbox, &header);
if (res != MBOX OK)

{
printf (“something went wrong\n”) ;
continue;

if (header.type == MBOX INTEGER)
printf (“%d\n”, *(int*)header.data);

if (header.type == MBOX CHAR ARR)
{
for(int i = 0; I < header.size; i++)
printf (“%c”, *((char*)header.data + 1));

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 38

Hardware interface

Sierra is a component with bus interface, running task ID information, external interrupt and external start of blocked

tasks.

Bus interface (TDBI) can be wrapped to the most busses on the market.

Running task ID info can be used to monitor the running task or logged of another hardware units for different

types of analyses.

External interrupt is direct connected to a task and the task will be scheduled before it can be running on the CPU
External start of blocked task is an advanced function to communicate with hardware units connected to SW tasks.

CPU
Bus

Kernel Accelerator

- WO

Sierra
Running
| task info
—» Tmgq g
4,\ 4 qu P
. GBI) /O Scheduller
—> g >
| -
S
External External Start of
Interrupts blocked tasks

Figure 8. Block schematic.

Sierra User Reference Manual, © Copyright by publisher AGSTU AB

e 39

sierra

== address[7..0] readdata[31..0] [
— clk irq [
— chipselect_n external_runing_taskid_info[2..0] frm—
— read_n external_ack_start_task —
writedata[31..0]

extirg_n[1..0]

— reset_n

— write_n

— external_call_start_blocked_task

=== external_taskid_start[2..0]

inst4
Figure 9: Sierra pin Interfaces
Table 4 Sierra Pin out
Pin name Direction | Description
clk Input, Sys System clock
reset_n Input, Sys HW reset
cs n Input, Bus Chip select
write_n Input, Bus Read / Write
addr(7:0) Input, Bus Address bus
din(31:0) Input, Bus Data bus in
dout(31:0) Output, Bus | Data bus out
irg_n Output, CPU | Task switch interrupt
extirg_n(1:0) Input, User | External interrupts
External_runing_taskid_info[2..0] Output, User | Updating Running task ID
(binary)
external_call_start_blocked_task Input, User Start of Blocked Tasks, Not
(extended Sierra) used = ‘0’.
external_ack_start_task Output, User | Start of Blocked Tasks
(extended Sierra)
external_taskid_start[2..0] Input, User | Start of Blocked Tasks
(extended Sierra)

Protocol with external start of blocked task (xtended sierra

Start of blocked task is done with following protocol:

1) Set “external taskid start” that should be started (it have to be in block state, block_task()) and write ‘1” to
“external call start blocked task”

2) Wait for “external_ack_task start” to be ‘1’

3) Write ‘0° to “external_call_start_blocked_task”

4) Wait for “external ack task start” to be ‘0’

Sierra User Reference Manual, © Copyright by publisher AGSTU AB e 40

Sierra SW File Structure

The Sierra low level API SW consists of the following files:

(] Sierra_RTOS (inte uppdaterad)
CJHAL
CJinc
altera_avalon_sierra_io.h
altera_avalon_sierra_ker.h
altera_avalon_sierra_name.h
altera_avalon_sierra_regs.h
altera_avalon_sierra_tcb.h
altera_avalon_sierra_tcb_offset.h
sierra_logging.h

I src
csw.S (context swtich routine)
sierra.c (basic service calls)
sierra_sem.c (Semafres and flags service calls)
sierra_taskc (Task service calls)
sierra_time.c (Time service calls)
sierra_info.c (Extra logging/info service calls)
sierra_logging (logging functions)
alt_exception_enty.S (Niosll exception handling)
alt_exception_trap.S (Niosll trap handling)
component.mk (makefile)

Sierra User Reference Manual, © Copyright by publisher AGSTU AB o 41

